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Abstract 

Improvement of branch predictors has been one of the 
focal points of computer architecture research during the 
last decade, ranging from two-level predictors to complex 
hybrid mechanisms. Most research efforts try to use real, 
already implemented, branch predictor sizes and 
organizations for comparison and evaluation. 

Yet, little is known about exact predictor 
implementation in Intel processors, apart from a few hints 
in the Intel manuals and valuable but unverified hacker 
efforts. Intel processors include performance monitoring 
counters that can count the events related to branches, 
and Intel provides a powerful VTune Performance 
Analyzer tool enabling easy access to performance 
counters. In this paper, we propose a series of 
experiments that explore the organization and size of a 
branch predictor, and use it to investigate Pentium III and 
Pentium 4 predictor implementations. Such knowledge 
could be used in further predictor research, as well as in 
the design of new, architecture-aware compilers. 

1. Introduction 

Conditional branches are one of the major barriers to 
successful program parallelization: when a conditional 
branch enters the execution pipeline, all instructions 
following the branch must wait for the branch resolution. 
A common solution to this problem is the speculative 
execution: branch outcome and/or its target are 
dynamically or statically predicted, so the execution can 
go on without stalls. If the prediction was incorrect, 
speculatively executed instructions must be flushed and 
their results discarded, which could produce a significant 
number of lost execution cycles. While static prediction 
can work well for some benchmarks, dynamic prediction 
solves the more general case. Hence, methods for better 
prediction are continuously investigated and improved, 
and in the last decade dynamic branch prediction schemes 
have been one of the focal points of computer architecture 
research, from two-level predictors to complex hybrid 
schemes. 

We know that modern commercial processors, such as 
Intel Pentium III (P6 architecture) and Pentium 4 
(NetBurst architecture) include some form of dynamic 
branch prediction mechanisms, but detailed information is 
rather scarce. On the other hand, these architectures 

include performance monitoring registers that can count 
several branch-related events, and Intel provides a quite 
powerful tool for easy access to these registers, the VTune 
Performance Analyzer [1].  

The purpose of this research is to devise a set of 
experiments that will explore some relevant parameters of 
the branch predictor structure, and to test it on P6 and 
NetBurst architectures. These parameters can be used for 
code optimization and as a starting point for comparison 
in future predictor research. The experiments have also 
educational value, providing better understanding of 
branch predictor mechanisms. 

The experiments are based on the values of 
performance counters during the execution of “spy”  
microbenchmarks, designed to test the existence and/or 
value of a particular branch predictor parameter. While 
microbenchmarks have been previously used to determine 
the characteristics of memory hierarchy [2] [3], such as 
cache line size, cache size, associativity, etc., we are not 
aware of similar efforts aimed to explore branch predictor 
structures. 

This paper is organized into seven sections. The 
second section gives a short overview of dynamic branch 
prediction schemes, and the third section defines the 
problem statement. The fourth section describes the 
experimental environment. The fifth section explains the 
proposed experiments, and the sixth section presents and 
discusses the results. The last section gives concluding 
remarks and indicates possible directions for further 
research. 

2. Dynamic Branch Prediction 

No matter how complex a branch predictor is, it could 
be described by some variation of the general scheme 
(Figure 1), consisting of two major parts: branch target 
buffer (BTB), and outcome predictor, for prediction of 
branch targets and branch outcomes, respectively.  

BTB

...

Outcome Predictor

  
Figure 1 General Branch Predictor Scheme. 



Dynamic prediction of a branch outcome is based on 
the state of a finite-state machine, which is usually a two-
bit saturating counter [4]. This counter is a cell of a 
branch prediction table (BPT), which could be accessed in 
different ways. The simplest BPT index is a portion of the 
branch address. More complex two-level predictors 
combine the branch address or its part with shift register 
representing the history of branch outcomes [5][6][7]. 
Global two-level predictors benefit from correlation 
between subsequent branches during program execution 
(global branch history), while local predictors are based 
on correlation between subsequent executions of the same 
branch (local branch history). Hybrid branch predictors 
can include both global and local prediction mechanisms, 
as well as some other prediction schemes, such as 
specialized loop predictors, or simple BPT [8]. Some 
hybrid predictors have parallel organization, where 
different predictor components predict branch outcome in 
parallel, and a selection mechanism, a predictor itself, 
decides which outcome to choose. Other hybrid predictors 
have serial (cascaded) organization, where the output of 
one predictor stage (predicted outcome) is part of the 
input to the other predictor stage [9][10]. Higher predictor 
stages are used only when lower stages are not able to 
predict the branch outcome correctly. Serial and parallel 
predictor organization can also be combined [11]. A very 
interesting solution accesses branch predictor table using 
“alloyed”  global and local branch history as part of the 
BPT index [12], thus predicting correctly branches that 
depend both on global and local history. It is also possible 
to add a third adaptivity level to a predictor [13], 
dynamically determining the optimum history length.  

Instead of exploiting correlation between outcomes of 
last h branches (pattern-based), dynamic branch predictor 
can use the information of the path to the current branch 
(path-based) [14]. Path history register stores address bits 
from each of last executed b branches, thus making the 
prediction path-dependant. One predictor can combine 
both pattern-based and path-based approaches.  

Prediction of branch outcome could be coupled or 
decoupled with a BTB. The BTB can hold one or more 
possible target addresses, even target instructions.  

Since every branch prediction table is of a finite size, 
different branches will use the same cell. This effect is 
called interference or aliasing [15], and lot of research has 
been dedicated to the interference problem [16][17][18].  

Some special branch types, such as returns and loops, 
could be handled by specialized predictors. 

3. Problem Statement 

For both P6 and NetBurst architectures, Intel sources 
[19], [20], [21] do not provide the exact description of the 
implemented branch predictors. Rather, they provide the 
exact number of BTB entries and several hints about 
program optimization that indicate some outcome 
predictor parameters. They state that the static prediction 

mechanism predicts backward conditional branches as 
taken, and forward branches as not taken. In the P6 
architecture, “prediction algorithm includes pattern 
matching and can track up to the last four branch 
directions per branch address,”  [20], which most probably 
means that the P6 branch predictor has a local history 
component with 4 history bits. The P6 BTB has 512 
entries.  

In the NetBurst architecture implemented in Pentium 
4, Intel claims to use some new prediction algorithm, 33% 
better than in P6. One of the assembly/compiler coding 
rules for Pentium 4 states that frequently executed loops 
with predictable number of iterations should be unrolled 
to reduce the number of iterations to 16 or fewer, and if 
the loop has n conditional branches, it should be unrolled 
so that the number of iterations is 16/n [19]. This rule 
indicates that Pentium 4 uses global outcome history, with 
probably 16 history bits, but the Intel sources never 
specifically say so. 

Another interesting characteristic of the NetBurst 
architecture, tightly coupled with the branch prediction 
mechanism, is an execution trace cache [21], which stores 
and delivers sequences of traces, built from decoded 
instructions following the execution flow. Intel sources 
explain that the trace cache and front-end translation 
engine have cooperating branch prediction hardware, so 
branch targets can be fetched from the trace cache, or in 
the case of trace cache miss, from the second level cache 
or memory. The trace cache BTB is smaller (512 entries) 
compared to the front-end BTB (4K entries). It seems that 
both the trace cache and front-end share the same 
outcome predictor mechanism [20], but apart from trace 
cache size (12K micro-ops), and cache line size (6 micro-
ops), Intel does not disclose too many details about its 
implementation. For example, one interesting question is 
whether just the most likely branch path is stored in the 
trace cache, or can it store more paths. More stored 
branch paths would reduce the number of lost cycles in 
the case of misprediction, since the correct instructions 
could be fetched from the trace cache instead from higher 
levels of memory hierarchy. 

Since the exact predictor parameters are important to 
software developers, some hacker efforts have been 
dedicated to this problem. In his Pentium optimization 
manual [22] A. Fog gives a short description of prediction 
mechanisms in Pentiums, up to the Pentium III. His 
findings include 4 local history bits for P6 architecture, 
and a 512-entry BTB organized as 16 ways * 32 sets, 
where bits 4-8 define the set. Unfortunately, he did not 
present any details about the nature of his experiments, so 
one of our goals is to verify his results. 

The goal of this research is to determine the branch 
predictor parameters most important for code 
optimization, by treating branch predictor structure as a 
black box and using a set of carefully designed 



microbenchmarks. In this paper, we restricted our efforts 
to the following parameters: 

1. Branch Target Buffer component 

• Size and organization. 

2. Outcome predictor component 

• The existence of a local prediction component, and 
the number of local history bits in history register; 

• The existence of a global prediction component, and 
the number of global history bits in history register. 

 
Considering the specifics of the NetBurst architecture 

and importance of the trace cache in the branch prediction 
mechanism, we also want to verify whether the trace 
cache is able to store both taken and not taken branch 
path. 

Once determined, these characteristics could help the 
code optimization. For example, the size and organization 
of BTB indicate how many branches can fit into it in the 
critical portion of the code, and the number of local/global 
history bits indicates the maximum branch correlation that 
a given predictor can recognize. 

We are aware that more predictor parameters are 
needed for better code optimization. Other relevant BTB 
parameters are the number of branch targets that could be 
stored per branch, BTB replacement policy, and address 
bits used for BTB tag. More complex hybrid predictor 
organizations, with several components, require further 
experiments to determine the exact component layout and 
a way to decide between predictions of different 
components. Due to out-of-order instruction execution, it 
is not easy to establish whether predictor mechanism is 
speculatively updated, or only after branch resolution. 
The replacement policy, trace length, and the possibility 
of speculative trace constructing are some of the trace 
cache parameters that are out of the scope of this paper. 
Design of microbenchmarks that would determine some 
of these parameters is part of the ongoing research. 

Both P6 and NetBurst architectures use return address 
stack to predict return addresses, and the size of this stack 
is known, so we do not consider any experiments related 
to function returns.  

Finally, in the case of Intel predictors we were able to 
assume some of the predictor characteristics, making the 
black box testing more transparent. In the general case, 
given a completely unknown predictor mechanism, more 
microbenchmarks must be used to determine its nature 
and parameters. For example, the outcome predictor does 
not have to be coupled with BTB, so it could predict all 
branches, and not just those stored in BTB. Loops could 
be predicted by a dedicated predictor component, and 
some predictor components can be path-based instead of 
pattern-based. All predictor components could use some 
of the mechanisms aimed to reduce branch interference. 
More general framework that would describe experiments 

for testing a completely black box predictor will be 
considered in future research.  

4. Experimental Environment 

Both P6 and NetBurst architectures have several 
performance counters, and several branch-related events 
can be measured. In this research, we consider the number 
of retired branches, including unconditional branches, and 
the number of mispredicted branches, using event-based 
sampling. In some NetBurst experiments, we also 
consider the number of execution cycles versus the 
number of cycles processor spent in trace cache delivery 
mode.  

Although event-based sampling is not precise, it gives 
a good estimation of the number of events. A performance 
counter is configured to count one or more types of events 
and to generate an interrupt when it overflows. The 
counter is preset to a modulus value that will cause the 
counter to overflow after a specific number of events have 
been counted. When the counter overflows, the processor 
generates a performance monitoring interrupt, and the 
corresponding interrupt service routine then records the 
return instruction pointer (RIP), and restarts the counter. 
Code performance can be analyzed by examining the 
distribution of RIPs with a tool like the Intel VTune 
Performance Analyzer. In this research we used VTune 
version 5.0. 

All test benchmarks are compiled using Microsoft 
Visual Studio 6.0 C compiler, with disabled optimization, 
so we are certain that the compiler optimizations do not 
change the order and number of conditional branches. For 
experiments with relatively large number of branches, we 
have also developed programs to generate benchmarks to 
our specification. 

In order to get reliable values of performance counters, 
the execution time of the monitored code must be 
significantly larger than the execution of interrupt service 
routine. Therefore, all microbenchmark code is placed 
within a loop executing a relatively large number of 
times.  

5. Experiments and Spy Microbenchmarks 

We perform two sets of experiments, one for the P6 
and another for the NetBurst architecture.  

5.1. Experiments for P6 architecture 

Experiments for the P6 architecture consist of two sets, 
one aimed at exploring size and organization of the BTB 
component, and another exploring the parameters of the 
outcome predictor component.  

5.1.1. BTB component 
The Intel documentation provides the size of BTB, i.e. 

NBTB entries [19], [20], but does not describe its 
organization - whether it is direct-mapped, 2-way, 4-way, 
etc. We perform the experiment with NBTB – 1 conditional 



branches in a loop, which makes a total of NBTB 
conditional branches in the code. The conditional 
branches in the loop are always taken, so they will be 
mispredicted by static algorithm if they are not present in 
the BTB. We vary the distance between the branches 
(fixed for one experiment), so the DM_Index_T bits that 
differ one branch address from another are in different 
position for different distances (Figure 2). Figure 3 shows 
the fragment of the code used for testing BTB 
organization.  

DM_Index_T

Distance

.........

DM_Index

DM_Index_T

DM_Index_T

...

DM_Index_T

D=2

D=4

D=2i-1

01i-1ii+j-1

D=2i

j = log2NBTB

 
Figure 2 BTB size and organization: varying the 

distance. 

... 
for (i=0; i < liter; i++) { 
 _asm {  
  noop 
  ... 
  noop 
  mov eax, 10  
  cmp eax, 15 
  jle l0 
  noop  
  ... 
  noop 
 l0: jle l1 
  noop 
  ... 
  noop 
 l1: jle l2 
  ... 
 
 l510: noop 
 } 
}    

Figure 3 Benchmark for testing BTB organization. 

This experiment discovers the values of “ fitting”  
distances DF, when all considered branches at distance DF 
can fit in the BTB. Hence, for a distance DF the number of 
mispredictions (MPR) will be close to zero, i.e. the 
performance counter should count only the negligible 
number of mispredictions. 

If there is only distance DF, then we can conclude that 
the BTB is direct-mapped. Bits used to address the BTB 
are Addr[ i+j-1 : i] (Figure 2, DM_Index bits). From the 
distance DF and the number of BTB entries we can 

determine exactly which address bits are used to address 
the BTB.  

If there are exactly two distances DF, we conclude that 
we have the 2-way set-associative organization of the 
BTB. Bits used to address the BTB are Addr[ i+j-2 : i]. 
Similarly, if there are exactly three distances DF, the BTB 
is 4-way set-associative. In general, if there are m 
“ fitting”  distances, the BTB is 2m-1-way set associative. 
Bits used to address the BTB are Addr[ i+j-m : i]. 

Now we can verify the assumption about the number 
of BTB entries by repeating the experiments for the 
“ fitting”  distances and larger number of branches. For 
example, if the real number of BTB entries is twice as 
large as the assumed one, and our experiments have found 
m distances DF, the set of experiments with the real 
number of entries should find m-1 such distances, i.e., the 
BTB would be 2m-2-way set associative. In the general 
case, if the real number of BTB entries is 2n times greater 
than the assumed one, the experiments should find m-n 
“ fitting”  distances. If the experiments with larger number 
of conditional branches do not find any such distance, our 
assumption about the size is correct.  

The number of ways can be also verified by trying to 
find a number of branches to fill a set, and to find a 
distance such that those branches will map into the same 
set, conditions necessary to increase the number of 
mispredictions. 

5.1.2. Outcome predictor component 
The set of experiments for exploring the characteristics 

of outcome predictor component is devised in such a way 
that most of the branches in the code are easily 
predictable, so we can concentrate on one conditional 
branch and its MPR, i.e., the MPR of whole program is 
generated by that branch. We call this branch a “spy”  
branch. Figure 4 explains the required experiment flow, 
step by step. 

In the Step 1, we try to determine the maximum length 
of a local history pattern that our predictor can correctly 
predict, for just one branch in the loop, i.e., the “spy”  
branch. The loop condition will have just one different 
outcome, on the exit, which is negligible compared to the 
number of iterations. Different repeating local history 
patterns can be used for this experiment; however, the 
simplest pattern has all outcomes the same but the last 
one. If “1”  means that the branch is taken, and “0”  not 
taken, such local history patterns are 1111...110 and 
0000...001. 

Figure 5 shows the code for one such pattern of length 
4, while Figure 6 shows the fragment of the 
corresponding assembly code. Note that the “spy”  branch 
if ((i%4)==0) is compiled as jne, so the local history 
pattern for this branch is 1110 (pattern length is four). The 
fragment does not show the loop, which is compiled as 
the combination of instructions jae at the beginning of the 

multiple  
of distance D 

distance D 

distance D 



loop and unconditional jmp at the end, so the jae outcome 
is 0 until the loop exit. 

Pattern length = L

local global

Yes No

Step 1: What is maximum length of the
"spy" branch pattern that would be correctly predicted
when the spy branch is the only branch in a loop?

Step 2: Is there (L - 1) bits of local component
or (2*L - 1) bits of global component?

Step 3: Is there a global
component that uses at
least 2 bits of global
history?

Step 4: How many
bits in global history
register?

Step 5: 0 or 1 bit in
global history
register?

Step 6: Is there a local
component that uses at
least n bits of local
history?

 
Figure 4 Experiment flow for outcome predictor. 

 
void main(void) {  
   int long unsigned i; 
   int a=1; 
   int long unsigned liter = 10000000; 
   for (i=0; i<liter; ++i){ 
     if ((i%4) ==0) a=0; //spy branch 
   } 
} 

Figure 5 Microbenchmark for Step 1 experiment. 

; Line 6 
  0002e mov  eax,DWORD PTR _i$[ebp] 
  00031 xor  edx, edx 
  00033 mov  ecx, 4 
  00038 div  ecx 
  0003a test  edx, edx 
  0003c jne  SHORT $L38 
  0003e mov  DWORD PTR _a$[ebp], 0 
$L38: 

Figure 6 Fragment of the assembly code for Figure 5 
code. 

We should get low MPR for all pattern lengths up to a 
certain number L, and then the outcome predictor will not 
be able to predict the last outcome of “spy”  branch. That 
is, for each pattern of length l, l>L, the “spy”  branch will 
be mispredicted once in l times. 

However, from this experiment we still can not 
conclude whether predictor has a local prediction 
component with lh=L-1 history register, or a global 
predictor component with gh=2*(L-1) history register. 
We must consider two cases:  

(a) The outcome predictor has local history 
component, so the pattern 11...10 with L-1 1’s and one 0 
is correctly predicted; when the pattern is 111...1 (L-1 
1’s), the next outcome is predicted to be 0, for 11...10 (L-
2 1’s), the next outcome is predicted to be 1, etc. 

(b) The outcome predictor has global history 
component, so the local history pattern 11...10 of the 
“spy”  branch with L-1 1’s was correctly predicted, but by 
using global history of previous 2*(L-1) branches. Since 
we have just the loop and “spy”  branch, there will be no 
mispredictions if all relevant local history fits into global 
history register. For example, just before executing the 
“spy”  branch with 0 outcome, the content of the global 
history register is 101010...10, where underlined and 
bolded 1’s are outcomes of the “spy”  branch, and 0’s are 
the outcomes of the loop condition branch. 

In Step 2, we verify which hypothesis matches our 
predictor. If the conditional branch in the loop is preceded 
by 2*(L-1) “dummy” conditional branches, having always 
the same outcome, we can be certain that no local “spy”  
history enters global history register. One example for the 
“dummy” branch is if (i<0) a=1. If in this experiment the 
MPR still stays low, the correct hypothesis is (a), a local 
history component, since the “spy”  outcomes are still 
correctly predicted. We should proceed to the Step 3, to 
determine whether the outcome predictor also has a global 
history component. 

If the MPR increases (last conditional branch is 
mispredicted once in L times), we conclude that the 
correct hypothesis is (b), a global history component. We 
could get the same result with insertion of just one 
“dummy” branch, but we wanted to be sure that there is 
no local history in the global history register. In this case, 
we should proceed to the Step 6, to determine whether the 
outcome predictor also has a local history component. 

 
void main(void) 
{ int a,b,c; 
  int long unsigned i; 
   
  for (i=1;i<=10000000;++i) 
  { if ((i%2) == 0) a=1; 
    else a=0; 
    if ((i%5) == 0) b=1; 
    else b=0; 
    if ( (a*b) == 1) c=1;  
  } 
} 

Figure 7 Microbenchmark for Step 3 experiment. 

 
The Step 3 microbenchmark has three conditional 

branches in a loop, where first two have predictable 
patterns 11...10 of different length l1 and l2, such that l1, 
l2 < L, and the smallest common denominator for (l1, l2) 
is greater then L. The third branch will be correlated with 
the first two, by having a pattern 11...10 of length greater 



than L, so it cannot be predicted by local component. It 
will be not taken when both previous branches are not 
taken (Figure 7). 

If this experiment still has a low MPR, the predictor 
also has a global component with at least two global 
history bits. The next step, Step 4, verifies the length of 
the global history register. The simplest way is to insert 
“dummy” conditional branches (pattern 111...11) before 
the “spy”  conditional branch. By varying the number of 
“dummy” branches, we will get the number of global 
history bits, since the “spy”  branch will not be predicted 
correctly if the number of “dummy” branches is greater 
than the number of global history bits – 2, and will always 
be predicted correctly for the smaller number of “dummy” 
branches. 

 
void main(void) 
{ int a,b,c; 
  int long unsigned i; 
   
  for (i=1;i<=10000000;++i) 
  { if ((i%2) == 0) a=1; 
    else a=0; 
    if ((i%5) == 0) b=1; 
    else b=0; 
    if (i<0) a=1; //dummy branch 
    ... 
    if (i<0) a=1; //dummy branch 
    if ( (a*b) == 1) c=1;  
  } 
} 

Figure 8 Microbenchmark for Step 4 experiment. 

If the 0 “spy”  outcome is mispredicted in the Step 3 
experiment, it means that there is no global component or 
there is just one bit of global history. The Step 5 
microbenchmark has just two conditional branches in the 
loop, where the first one has local history pattern 
111...110 of a length l>L, and the second one has the 
same outcome as the first. Since from the Step 3 we know 
there is no more than one global history bit, the first 
conditional branch will always be mispredicted once in l 
times. If there is no global component at all, the second 
branch will be mispredicted the same number of times, 
while it should always be predicted correctly if there is 
one bit global history component. We could determine the 
existence of one bit global history predictor by examining 
the number of mispredictions in this experiment. 

If we have a global component with 2*(L-1) history 
bits, do we also have a local component? The Step 6 
microbenchmark has 2*(L-1) “dummy” branches (Figure 
9), and varies the pattern length l of the “spy”  branch. If 
the MPR is low for some l, there is an equivalent of local 
component with at least l-1 history bits. Depending on the 
decision mechanism, there could be more local history 
bits, so further experiments might be needed. This is out 
of the scope of this paper. 

 

void main(void) {  
  int long unsigned i; 
  int a=1; 
  int long unsigned liter = 10000000; 
  for (i=0; i<liter; ++i){ 
   if (i<0) a=1;//dummy branch 1 
   ... 
   if (i<0) a=1;//dummy branch 2*(L-1) 
   if ((i%l) == 0) a=0; //spy branch 
  } 
} 

Figure 9 Microbenchmark for Step 6 experiment. 

5.2. Experiments for NetBurst architecture 

Since the NetBurst architecture includes dual BTB 
structures, one for front-end processor part, BTBFE, and 
another for the trace cache, BTBTC, the experiments 
consist of three sets: one set aimed at exploring the size 
and organization of front-end BTB component, another to 
explore the parameters of the outcome predictor 
component, and the third one targeted at the trace cache 
BTB. 

5.2.1. Front-end BTB component 
We will first verify the size and organization of 

BTBFE, using the same set of experiments as defined for 
the P6 BTB in section 5.2.1.  

5.2.2. Outcome predictor 
To verify the existence and length of global and local 

history registers, we will use the same set of experiments 
as defined for the P6 outcome predictor in section 5.2.2. 

5.2.3. Trace cache BTB component 
We first verify whether both taken and not taken paths 

are stored in the trace cache, if executed code includes 
both paths. This experiment uses similar microbenchmark 
to the one from Step 1 described in section 5.2.2, where a 
“spy”  branch has both if and else paths. We compare the 
number of cycles spent in the trace cache delivery mode 
with the total number of cycles, when the number of 
mispredictions is low. If the trace cache delivers traces for 
most of time, it means that both taken and not taken paths 
are stored in the trace cache, and that the trace cache 
prediction mechanism points to the correct target. 

Microbenchmark for the next set of experiments 
includes N “spy”  branches in a loop, with the same 
behavior and both taken and not taken paths visited 
during execution. The “spy”  branch behavior is set 
according to the results of section 5.2.2 experiments, so 
that the number of mispredictions should be relatively low 
with the given outcome predictor. For example, if the 
outcome predictor has a global component and no local 
component, the “spy”  branch condition may be if ((i%l) 
== 0), so the first “spy”  branch will be mispredicted once 
in l times, and all other branches should be predicted 
correctly, since their outcomes are the same as the 



outcome of the first branch and hence predicted by global 
component. 

We will consider three different cases, where N 
conditional branches in each case fit into BTBFE: 

(a) Executed code does not fit into trace cache, 
(b) Executed code fits into trace cache, but branches do 

not fit into BTBTC, 
(c) Executed code fits into trace cache, and branches fit 

into BTBTC. 
In the case (a) the MPR is low, and trace cache spends 

relatively few cycles in the delivery mode. 
Although in the case (b) all executed code can fit into 

the trace cache, some branches will be mispredicted due 
to the size of BTBTC. Trace cache spends relatively few 
cycles in the delivery mode. 

When all branches in the loop fit in the BTBTC, MPR 
will be low, and the number of cycles spent in delivery 
mode will be close to the total number of cycles. 

This set of experiments tries to establish the boundary 
values of N for all three cases.  

Similarly to the BTBFE experiment, we may try to 
establish the number of micro-operations between two 
conditional branches in the execution flow, thus 
determining the organization of BTBTC. 

6. Results 

6.1. Results for P6 architecture 

6.1.1. Branch Target Buffer component 
We assume NBTB=512. The MPR is close to 0%, when 

the distance between addresses of subsequent branches is 
4, 8, or 16, and close to 100% for other distances (Figure 
10). Since we have three different distances producing 
low MPR, this result means that P6 architecture has BTB 
organized in 4 ways, 128 sets.  

From the result of this experiment, we are also able to 
determine that address bits 4-10 are used as the set index. 
Note that our experiments prove the Pentium III to have 
different organization than stated in A. Fog’s optimization 
manual [22]. 

This result can be also obtained by trying to map NWAY 
+ 1 branches in the same set, varying the distance 
between them and the number of branches (Table 1). 
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Figure 10 Misprediction rate for NBTB conditional 

branches, varying the distance. 

 
Table 1 P6 branches retired and mispredicted when 

NWAY + 1 branches map in the same set. 

Iterations: 10M, NoBranches: 17 

Distance Branches retired Mispredicted  

256       168,676,020                2,860 

512       175,629,710        39,113,116 

1024       179,564,544      159,796,902 

2048       178,080,370      157,893,705 

Iterations: 10M, NoBranches: 9 
Distance Branches retired Mispredicted 

512         97,956,788                2,436 

1024         98,966,308        39,204,144 

2048         99,457,820        79,125,818 

Iterations: 10M, NoBranches: 5 
Distance Branches retired Mispredicted 

512         58,681,763                1,253 

1024         58,219,608              29,484 

2048         59,219,391          9,792,944 

4096         59,807,200        19,687,990 

8192         59,736,047        19,548,096 

Iterations: 1M, NoBranches: 16 
Distance Branches retired Mispredicted 

512         17,018,520                1,953 

1024         17,050,360        14,938,664 

Iterations: 1M, NoBranches: 8 
Distance Branches retired Mispredicted 

1024          9,028,895                2,520 

2048          9,034,300          6,927,480 

Iterations: 1M, NoBranches: 4 
Distance Branches retired Mispredicted 

2048          5,057,136                2,400 

4096          5,018,825                4,097 
 



Finally, to verify whether the size assumption was 
correct, we run the different distance experiment with 
twice as many branches. Table 2 shows results for the P6 
architecture for 1024 branches. The distances that 
produced low MPR when the number of branches was 
512 now produce the MPR close to 100%. From this we 
conclude that the number of entries is really 512. Figure 
11 shows the BTB size and organization as established by 
our experiments. 

 
Table 2 P6 number of branches retired and 

mispredicted when the total number of branches is 
twice as much as NBTB. 

Iter. 1M, NoBranches 1024 
Distance Branches retired Mispredicted 

4 1,023,000,000 1,017,750,000 

8 1,017,400,000 1,016,900,000 

16 1,018,900,000 1,020,700,000 
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Figure 11 BTB size and organization. 

6.1.2. Prediction component 
Table 3 shows the results of Step 1 experiment (Figure 

5). The maximum length of a correctly predicted pattern 
is 5. This result can be caused by a local component that 
uses 4 bits of local history, or a global component that 
uses 8 global history bits. 

 
Table 3 Results of Step 1 experiment. 

Iter. Pattern 
length 

Branches 
retired 

Mispredicted 

10 M 4 27,035,204  420  

 5 28,468,884  432 

 6 28,205,352  1,545,480  
 
We proceed with the Step 2 experiment that inserts 8 

“dummy” conditional branches before the “spy”  branch. 
Since the MPR is still close to 0 when we have longer 
global history pattern, the P6 architecture really uses a 
local branch history of length 4.  

In the Step 3 experiment, the microbenchmark has 3 
conditional branches in a loop, where first two have 
patterns 11...10 of length 5 and 2, respectively, 
predictable by the local component. The outcome of the 
third branch is correlated with the previous two, having a 
pattern 11...10 of length ten, not predictable by local 

component. The MPR is about 10%, so the P6 
architecture does not use a global history pattern of length 
greater or equal to two.  

The Step 4 experiment is a 10 million iteration loop, 
with two conditional branches. First branch has a pattern 
111110 of length 6, hence not predictable by the local 
component, while the second branch is correlated with it 
by having the same outcome. The result is about 3 million 
mispredicted branches, so both conditional branches are 
mispredicted once in six times. Therefore, the P6 
architecture does not include global prediction 
component. 

6.2. Results for NetBurst architecture 

6.2.1. Front-end BTB component 
We assume NBTB-FE=4096. Results are similar to the 

results of the same experiment for the P6 architecture, i.e., 
the MPR is close to 0%, when the distance between 
addresses of subsequent branches was 4, 8, or 16, and 
close to 100% for other distances. Therefore, the front-
end BTB has 4 ways and 1024, while bits 4-13 are used as 
the set index (Figure 12). 

0

1023
...

Distance

......

Index
013413

NetBurst Address

21431
NetBurst BTB

10

 
Figure 12 Front-end BTB size and organization. 

6.2.2. Outcome predictor 
Table 4 shows the results of the Step 1 experiment: the 

maximum length of a correctly predicted pattern is 9, 
which could be explained either by 8 bit local history 
register, or 16 bit global history register. 

 
Table 4 Results of Step 1 experiment. 

Iter. Pattern 
length 

Branches 
retired 

Mispredicted 

10 M 5 30,357,420 987 

 6 30,362,568 973 

 7 30,401,322 957 

 8 30,318,387 1,256 

 9 30,326,432 918 

 10 30,352,542 964,830 
 
In the Step 2 experiment, we insert 16 “dummy” 

branches before the “spy”  branch with a local pattern of 
length 9, and the measured MPR is about 10%. Therefore, 
the Step 1 result is caused by a global component that 



uses 16 global history bits (the “spy”  branch in the Step 2 
is mispredicted once in 9 times). 

After several runs of different Step 6 experiments, first 
conclusion might be that the NetBurst architecture uses 
one local history bit for prediction (Table 5). Because this 
architecture includes the trace cache, we run an additional 
experiment, with structure from the Step 6 repeated 10 
times (16 “dummy” branches, one “spy”  with local 
history pattern of length 2). Ten “spy”  branches have the 
MPR of about 50%, which is expected for the outcome 
predictor without any local component. Hence, low MPR 
in the Step 6 with pattern length 2 is due to the trace 
cache, most probably since it was able to store the 
sequence “ loop, 16 dummy branches, spy taken, loop, 16 
dummy branches, spy not taken”  as one continuous trace. 

 
Table 5 Results of Step 6 experiment. 

Iter. Pattern length Mispredicted branches 
10 M 2 0% 

 3 33% 

 4 25% 

 5 20% 
 

6.2.3. Trace cache BTB component 
In the experiment with one “spy”  branch in a loop, 

having both if and else paths and pattern of length 9, the 
number of cycles the trace cache spent in delivery mode is 
close to the total number of execution cycles. This result 
indicates that trace cache is able to store both branch 
paths, if both are executed. 

Since in the previous section we ascertain that the 
NetBurst architecture does not have a local component, 
we might use N “spy”  branches if (i%3==0). In this 
paper, we discuss one example for each of (a), (b), (c) 
cases, while the determining of exact border values of N 
is not considered here. The distance between spy branch 
addresses is 32.  

For N=2048, the MPR is relatively low (case (a)), 
since for this value of N microbenchmark code does not 
fit into the trace cache, but its branches fit into BTBFE. 
For N=512, the MPR is close to 100%, since executed 
code can fit into the trace cache, but executed branches do 
not fit into BTBTC (case (b)). The example for case (c) is 
when N=127 – MPR is close to 0%, since branches fit 
into BTBTC. 

7. Conclusion 

Although a lot of research effort has been dedicated to 
the branch predictors in the last decades, modern 
processors still hide the exact predictor implementation 
details. In this paper we propose a set of experiments 
aimed at systematically determining the organization of 
the BTB components, i.e., number of BTB ways and bits 

used for the set index, the existence of local and global 
history component, and the corresponding number of 
history bits. We use Microsoft C compiler and Intel 
VTune Performance Analyzer tool. 

Our experiments show that the BTB in the P6 
architecture is 4 ways, same as the NetBurst’s front-end 
BTB. The P6’s 128 sets are accessed by address bits 4-10, 
while the NetBurst’s 1024 sets are accessed using bits 4-
13. The P6 predictor has a local history component with 4 
local history bits, while the NetBurst architecture has a 
global history component with 16 global history bits. The 
trace cache in the NetBurst architecture is able to store 
both taken and not taken branch paths, if both paths are 
visited during program execution. The determining of 
exact organization of the trace cache BTB is part of the 
ongoing research. 

We also plan to design experiments aimed to discover 
other predictor parameters, such as the choice of bits for 
BTB tag, number of different branch targets stored in 
BTB, number of bits and starting state of prediction state 
machines, organization of the outcome predictor 
component in more complex predictors, etc. We hope that 
further research in this direction will improve the code 
optimization and understanding of the predictor 
mechanisms. 
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